
Rokos Award Internship 
Developing a Reinforcement Learning Agent to play Angry Birds  

This summer, I had the opportunity to help in the development of a reinforcement learning agent 

that would be designed to play Angry Birds. Reinforcement learning is a subset of machine learning, 

where agents are designed to interact with an unknown environment and improve on their 

behaviours based on the quality of their previous actions. Essentially, the agent will decide on an 

action based on the state it is currently in, take that action and have it rewarded based on a 

previously determined algorithm, and then use that reward to update its decision-making process 

should that same state be reached again. 

Recording Agent 
The first part of my internship was to design an agent that would record a human playthrough of an 

Angry Birds level. The aim was to record each shot taken by identifying the slingshot in the game 

window, and then finding the launch position of the bird relative to that slingshot. Rather than 

starting from scratch, I was provided with a java agent that would play through levels with a very 

basic shooting strategy. This agent connected to a chrome version of Angry Birds with a chrome 

extension, and would send actions (clicks and drags) to the game and in turn would receive 

screenshots of the game state. The agent had a vision module that would be able to identify 

significant objects in Angry Birds levels (birds, sling, pigs, blocks, etc.).  

 

Whilst this provided a helpful starting point, to record human player actions, it would be necessary 

for the agent to record clicks and drags made by the user. I was able to modify the chrome extension 

so that any such action would be recorded, and then sent to the java agent. One of the other issues 

with the provided agent was that screenshots were only taken at regular intervals determined by 

how quickly the vision module could process the incoming images. However, this could result in 

actions being taken by the player in the gaps between screenshots. It was especially important that 

the recording agent had an accurate portrait of the game state when actions were being taken so 

that the recorded inputs were as accurate as possible. To ensure this, I modified the chrome 

extension so as to send screenshots of the game whenever a click was detected. 

To store the recorded information, I used a MongoDB database. For each shot, the launch position 

of the bird in relation to the slingshot was recorded, as well as the game state (e.g. the number of 

birds/pigs remaining) after the shot had been taken. 

  



Reinforcement Learning Agent 
The second part of my internship was to develop a basic reinforcement learning (RL) agent that 

would be able to play simply designed Angry Birds levels. RL is a method of machine learning where 

an agent is provided with no initial information about its environment (such as training data) but will 

be rewarded on the actions it takes depending on the quality of those actions. As such, an RL agent 

must balance both exploitation (choosing actions already known to give a high reward) and 

exploration (choosing actions that may have higher rewards, but whose value has not been precisely 

determined yet).  

Monte Carlo Tree Search 
Due to the nature of Angry Birds, it would require a large time and computing cost to explore all 

possible states, so it is practical to use a heuristic algorithm. I chose to design a Monte Carlo Tree 

Search (MCTS) algorithm to learn to play Angry Birds.  Rather than exploring every state first, an 

MCTS algorithm estimates the quality of certain states through repeated random play from that 

given state. An MCTS consists of four stages: 

1. Selection: A path starting from the initial node is taken based on maximising a chosen value. 

This could be based entirely on the current expected reward of each action, or could also 

account for how certain the agent is on each reward estimation by also factoring in the 

number of times that action has been taken. 

2. Expansion: Once a node is reached with insufficient collected data to properly assess future 

action values (usually because the node has not been encountered a sufficient number of 

times), a random action is taken, and a new node is created. 

3. Simulation: The agent will play the game until completion with random actions being 

chosen. With multiple random playthroughs from the same node, the average of the 

rewards obtained should approach a good approximation of the actual potential reward of 

that node. 

4. Backpropagation: On completion of the simulation, the reward obtained is used to update 

the expected rewards of the actions taken. 

 



 

Science Birds 
One of the issues I faced with just using a web browser version of Angry Birds was length of time 

required for the MCTS agent to learn the game and improve. As the agent must play each state it 

encounters potentially up to around a hundred times, and at normal speed, the learning process is 

quite slow. Science Birds is a unity clone of Angry Birds that has a number of benefits over the 

browser version of the game when implementing an RL agent. Primarily, Science Birds allows for the 

speed of gameplay to be increased (up to around 50 times normal speed). This allows for much 

faster playthroughs of each level which vastly increases the speed at which the agent can learn.  

Additionally, it is far easier to create new levels for the agent to learn on. The AI Birds level 

generation competition provides a baseline generator that can be modified to produce randomly 

generated simple levels. To simplify the 

game for the RL agent, only one block 

type would be used in level 

construction, and only red birds would 

be used. By only using one block type, 

the state recorded could simply be the 

location of the centre of each block and 

pig in the level, and the number of 

birds remaining. This also reduced the 

accuracy required for the vision module 

as any blocks identified would be 

known to be that one block type.  

 

MCTS Agent Design 
One of the challenges with designing the MCTS for the Angry Birds agent is the slight randomness in 

the Angry Birds gameplay. Actions do not necessarily lead to exactly the same results, and so when 

considering the tree search, this means that actions do not necessarily always lead to the same 

future node. Rather than saving future expected rewards on nodes, and then assessing actions based 

on the nodes they lead to, it was much more practical to save expected rewards on the actions 

themselves. The agent performed the four stages of the MCTS as below: 

1. Selection: A path starting from the initial node is taken based on maximising 

𝑆𝐸𝐿(𝑎) = 𝑄(𝑎) +
𝐶

1 + 𝑁(𝑎)
 

where Q(a) and N(a) were the expected reward of the action ‘a’ and number of times it had 

been taken respectively.  

2. Expansion and Simulation: Once a node is reached that had not been reached enough 

times, actions would be taken randomly, although ensuring each action would be tried once 

before any actions were retried. 

3. Backpropagation: On completion of the simulation, the reward obtained is used to update 

the expected rewards of the actions taken. 

To limit the number of possible actions, the agent was limited to taking shots between angles of 10 

and 120 degrees in increments of 10 degrees, and shots would be taken either with full power, or 

60% power. 

Example of Generated Level 



Overall, I felt that over the course of my internship, I learnt a lot about the basics of reinforcement 

learning. As I go into my third and fourth year of engineering, this foundation should be helpful if I 

choose to do any machine learning courses/projects. I also had the opportunity to improve my skills 

at coding in Java and javascript. I would like to thank Clarissa Costen and Bruno Lacerda for 

supervising my internship, as well as Nick Hawes for helping organise it. 


