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1 Introduction
Improvements in single-cell RNA sequencing [4] has allowed us to use RNA abundance as an indication of cell
state. By counting and classifying RNA molecules in individual cells, biologists can precisely characterise
distinct cell states within any tissue using statistical methods described in Luecken and Theis 2019 [2].
These methods only give us information about a cell at a snapshot in time as we need to break apart
the cell to sequence the RNA. By using the ratio of spliced and unspliced RNA we can calculate an RNA
velocity [1] which can be seen as the “time-derivative of the gene expression state”. RNA timestamping
[3] gives us an insight into the time of creation of each RNA molecule which can be used to estimate the
previous transcriptional activity. In this paper we look to create a mathematical model of RNA creation and
accumulation of edits. At first we use a simplified model using the bulk sequencing data which can not give
an insight into a specific cell activity but should be insightful in the modelling of editing rates. This model
also does not include any degradation as we concentrate purely on normalised “editing distributions”. In
our more developed model we model absolute counts and stochastic cell degradation. Due to the currently
limited “volume” of data on timestamping, we see if our experiment can accurately be used to simulate more
complicated experiments. Finally we see if our model can be used to make a prediction of RNA velocity
using the timestamps rather than using ratio of spliced to unspliced RNA.

2 Biological Background

2.1 RNA velocity
In the RNA velocity paper [1], the velocity is defined as the rate of change of spliced mRNA abundance.
The model for the spliced and unspliced mRNA is given by:

u̇ = α(t)− β(t)u(t)
ṡ = β(t)u(t)− γs(t) (1)

where u and s is the expected abundance of unspliced and spliced mRNA respectively. α(t) is the rate of
production, β(t) is the rate of splicing and γ is the rate of degradation. We will see in the next section how
this choice of equation inspires the simplified model for editing counts. They set the splicing rate β(t) = 1
and assume a constant number of unspliced molecules to simplify the model and give the single rate equation:

ṡ = u− γs(t) (2)

this therefore gives us a much simpler formulation of RNA velocity. Under the assumption that some of the
single cell readings are at the steady state, we can use the phase plane to make an estimate of γ (we will
use a similar method in section 4.3 to estimate degradation rate). It is assumed that the equations hold
independently for all genes such that each gene has different rate constants (the same assumption is made
for our models). Due to variability in cell size and “global variation of splicing efficiency and detection of
unspliced molecules” the spliced and unspliced counts must be normalised separately. This is done by letting
u = U/Nu and s = S/Ns where U and S are absolute number of unspliced and spliced counts respectively,
and Nu and Ns are the total number of unspliced and spliced counts in a cell. We attempt to normalise our
own definition of RNA velocity in a similar way.
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2.2 Timestamping
RNA timestamping gives us an estimate an indication as to how old each RNA molecule is. In the experi-
ments, RNA molecules are tagged with a reporter motif. A enzyme called ADAR is added to the cells leading
to the gradual accumulation of A-to-I edits on the timestamps. Counting the number of these edits on the
timestamps allows us to infer the age of the RNA molecule on the timescale of hours. The data used in this
paper come from two distinct experiments in the timestamping paper [3].

Firstly, a group of cells were left in a medium containing deoxycycline (an RNA transcription promoter)
for 1 hour. A transcription inhibiter was added, the cells left to accumulate edits for a variable amount
of time before the cells were lysed and timestamps sequenced. The amount of time the cells were left was
1,2,...,12 hrs (so we had 12 different readings). Bulk sequencing was carried out on the cells (rather than
single cell) to produce a normalised “editing distribution” which gives us the distribution of different edits
at this time point. The “Simplified Model” is trained using this data.

The second experiment is carried out very similarly but each cell is sequenced separately using single-
cell sequencing which allows us to look at the behaviour of particular cells and to calculate RNA velocity.
Additionally, in the second experiment the cells were only sequenced at the 1, 2 and 4 hour time points.

3 Simplified model
First we tried a simple model for the editing rates. This model is inspired by the model of the spliced
and unspliced molecules in equation (1). Suppose ai is the number of RNA molecules with i edits and
k = (k0, k1, · · · , k40) be the editing rates. Then we assume a linear system of ODEs given by:

ȧ0 = p(t)− k0a0
ȧ1 = k0a0 − k1a1 (3)
· · ·

ȧ40 = k39a39 − k40a40

where p(t) refers to the production rate at time t. The model is “simplified” as we do not account for
degradation of the RNA molecules which we know must occur. These equations are used to model the first
experiment of the timestamping paper (as described in 2.2) where the data is from bulk sequencing and
the observed distributions are normalised. By “normalised” we mean that each observation of edit counts
is divided by the number of RNA observed so that the sum of all counts is 1. By assuming the initial
production occurs at a constant rate, we can model the experiment as p(t) = AH(1 − t) where H is the
Heaviside function and A is the constant amplitude of production and by asserting that initially there is no
RNA.

3.1 Fitting parameters
Let a(t) = (a0(t), a1(t), · · · , a40(t)) be the solution to (1) with initial condition a(0) = 0. Using the data
provided we look to set up an optimisation problem to find the parameters ki and A that fit the experimental
data. As we are only provided the data for the normalised editing counts it becomes very hard to estimate the
amplitude of production A. Therefore to simplify the optimisation problem we set A = 1 under the condition
that for this model we are only concerned with the normalised distributions. We verify this simplification in
the “verifying amplitude simplification” subsection.

To fit the parameters ki we used ODE45 and used MATLAB global optimisation toolbox with the
following loss function:

Loss(k) =

12∑
i=1

∥∥∥∥ ã

‖ã(i)‖1
−D[i]

∥∥∥∥2
2

(4)

where D[i] is the observed editing distribution at time i and ã = (a1(t), a2(t), · · · , a40(t)). In the experiments
they do not make observations of RNA molecules with no edits so we exclude a0 from ã. It is worth noting
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that, although we do not include the 0 edit state in our loss function we still need to solve for it to find the
other editing states. Originally, we attempted to use “dsolve” which is an analytical solver to solve the set of
equations (1) which gives us an analytical representation of loss with algebraic parameters ki. The advantage
of this over ODE45 is that we can run gradient descent to find the optimal parameters rather than resorting
to the less efficient local solver below. However, when working with more than 7 different parameters ki this
became far too computationally expensive (in our case there were 40 parameters to track).

To set up the ODE we created a separate file dstate.m which took the input C which is a 40× 1 array
where C = [k0, k1, · · · k40].

dstate.m

1 function dydt = dstate(t,y,C)
2 c = diag(C(1:39));
3 d=zeros(40);
4 d(2:40,1:39)=c;
5 A = d − diag(C);
6 B = zeros(40,1);
7 B(1,1)= heaviside(1−t);
8 dydt=A*y+B;

loss.m

1 function l=loss(C, BasisVectors)
2 [~,y] = ode45(@(t,Y) dstate(t,Y,C),[0 1 2 3 4 5 6 7 8 9 10 11 12], zeros(40,1));
3 % exclude the 0 edits and the data at time 0
4 modelledDist = y(2:13,:).';
5 modelledDist2 = zeros(39,12);
6 % We normalise the data in each timeframe
7 for i=1:12
8 modelledDist2(:,i)=modelledDist(2:40,i)/sum(modelledDist(2:40,i));
9 end
10
11 l = norm(BasisVectors−modelledDist2);

computationalSolver.m

1 BasisVectors = table2array(readtable('BasisVectors.csv'));
2 BasisVectors = BasisVectors(2:40,:);
3
4 C = ones(40,1);
5
6 A = [];
7 b = [];
8 Aeq = [];
9 beq = [];
10 ub = 1000*ones(1,40);
11 lb = zeros(1,40);
12 nonlcon =[];
13
14 gs = GlobalSearch('Display','iter');
15 lossFunc = @(c) loss(c,BasisVectors);
16 problem = createOptimProblem('fmincon','x0',C,'objective',lossFunc,'lb',lb,'ub',ub);
17 problem.options.Display = 'final';
18 problem.options.MaxFunctionEvaluations = 3.000000e+04;
19 x = run(gs,problem);
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The file loss.m implements the loss function in (2) into a MATLAB function while computationalSolver
.m looks to find the parameters ki which minimise the loss function. computationalSolver.m uses the Glob-
alSearch function from the Global Optimisation Toolbox which repeatedly runs a local solver. In this case
the default “interior-point” local solver is used. The “MaxFunctionEvaluations” was set to be large so that
the local solver stops when the iteration steps become small and to prevent it from stopping early. We have
to work with a bounded optimisation problem as we need all our constants ki to be larger than 0.

Using these files we found a set of parameters that fit the model well for 2 hours timepoint onwards. This
did not fit the model well for the first hour as shown in Figure 1. This is because the first 12 edits all occur
at a much shorter timescale. Moving forward we therefore decided to merge the first 12 edit states into one
state.

Figure 1: Before merging first 12 edit states

3.2 Verifying Amplitude simplification
Using the parameters ki in the previous section we ran the computational ODE solver for different values
of the amplitude of production, A. The average percentage change (APC) when moving from A = 1 to
A = 0.1 is 0.72% and moving from A = 1 to A = 10 the APC is 0.27%. The APC is calculated by finding the
average across all edits and timepoints of the absolute difference between the modelled normalised counts
with different amplitudes divided by the observed normalised count when A=1. As changing the amplitude
by a factor of 10 does not seem to affect the normalised edit counts for our parameters we have justified
the arbitrary choice of A = 1 in the previous section. This is intuitive as all RNA molecules are conserved
(there is no degradation) and we are dividing by total number of RNA molecules so changing the number
of RNA produced should not change the expected normalised distribution. It is important to note that the
predictions of this model must always be normalised (which makes sense as we have trained using normalised
data).

3.3 Testing Goodness of fit
As described in subsection 3.1 we decided to merge the first 12 edit states. Rather than use all the data
to train k, we left out hour 4 and hour 8 which we will use as our test set (see Figure 2). After training
(using approach described above) to get our editing parameters, the average test error is 0.00263. This is
the average squared difference between predictive and observed distribution.

We seem to have a good fit in the test data so we will proceed with this model. A lot of the inaccuracy
again comes from the first 12 edits, even though the model is greatly improved by merging the first 12 edit
states. This is because in the experiment RNA molecules were not counted unless they had an edit on each
read. (See “Alignment and edit counting” section of timestamping paper [3]).

We then retrained using all 12 editing distributions to get a new set of parameters.
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(a) test set 1 (b) test set 2

Figure 2: Test prediction vs observation

3.4 Simulations
Using the simple model above we were able to simulate the behaviour of the first experiment in the Times-
tamping paper [3] . We multiplied the normalised distribution by 105 and rounded the numbers to get an
absolute count of RNA molecules as our initial absolute distribution. We assume each RNA molecule is
created at a time uniformly distributed between 0 and 1 hour as the doxycycline promoter caused RNA
production for the first hour. If an RNA molecule has i edits at time t, then after i.i.d random variable with
Exp(ki) distribution amount of time the molecule has i+1 edits. We drew from the exponential distribution
by first drawing an i.i.d random variable X from a U [0, 1] distribution.

T =
1

ki
log(1/X)

T has a Exp(ki) distribution. At each time point we then normalised the distribution so that we could
compare with our observations. As shown in Figure 3, these simulations seem to match the ODE model and
the observed data well. These simulations can only simulate experiments where there is constant production
the first hour and then no production after (where a production inhibitor has been added).

3.5 Simulating new experiments
Using the simulation object in the Python code, we simulated two new experiments. These simulations have
RNA production for the first hour but we have freedom over the initial distribution of edits for the RNA
produced. Firstly, we used a Poisson distribution with mean 4 as the initial distribution. If p(i) is the
probability of a random RNA molecule having i edits then p(i) = e−44i

i! . Then we sampled the simulation
after 4 hours and after 8 hours.

Secondly, we used an exponential distribution but only gave edits non-zero probability if the edit count
was a multiple of 3 (as shown in figure 4). We then sampled the simulation after 1 hour and 2 hours.

3.6 Reasons for error
A lot of the error in fitting the the parameters came from the fact that we do not have a reading for the 0
edits columns - it would be useful to find a way to get an experimental method to find this.

The model could also be greatly improved by only using the bases mentioned in the Supplementary Figure
3 of the Timestamping paper [3]. These bases have editing times which are closest to being exponential, so
I would expect our model to fit these bases much better.
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Figure 3: For ease of viewing the 0 column now shows the 1-12 edits observation, the 1 column shows the
13 edits column and so on...

(a) Experiment 1 (b) Experiment 2

Figure 4: Simulating new expermients

3.7 Model Conclusions
The model seems to be a good fit for the first experiment in the timestamping paper and allows us to make
accurate simulations of experiments which are carried out. However, there a few clear issues with the model.

We have made an assumption on the production of the RNA (we assume RNA is produced at a constant
rate) when we do not need to for determining ki. Even though our assumption does seem intuitive, we could
treat the first observation as our initial condition and use the fact that we know no RNA is produced after
the first observation (as an inhibitor is added) to more accurately determine the constants ki (as shown in
the next model).

All the data in this experiment is from bulk sequencing data. Even though we expect edits to accumulate
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at the same rate for single-cell experiments, the next model is trained specifically on single-cell data. The
single-cell data then allows us to make predictions on RNA velocity for each cell which is not possible for
bulk sequencing data. Crucially, it also allows us to make simulations for individual cells.

Finally, the simplified model does not include a degradation rate for the RNA molecules. Naturally,
the RNA molecules must degrade and the rate of degradation is something that will prove crucial to our
definition of RNA velocity. Therefore it is important to find a model which includes this feature.

4 More developed model
There are two key changes in the more developed model. The first being that the ai now represents expected
absolute number of RNA molecules with i edits rather than concentrating on the relative edits. This means
that we can no longer choose the rate of production as 1 arbitrarily. Secondly, we introduce the degradation
of the RNA molecules at a rate c.

ȧ0 = p(t)− k0a0 − ca0
ȧ1 = k0a0 − k1a1 − ca1 (5)
· · ·

ȧ24 = k23a23 − k24a24 − ca24
ȧ25 = k24a24 − ca25

The single cell experiments only concentrate on one of the reads so in these experiments we only have
25 editing bases. Note also that there is no −k25a25 term. This means that the columns in the matrix K
(below) sum to 0 which makes the parameters k much easier to solve for (as shown in the next section).

K =



−k0 0 . . . . . . 0
k0 −k1 0 . . . . . . 0
0 k1 −k2 . . . . . . 0
...

. . . . . .
0 . . . . . . k23 −k24 0
0 . . . . . . 0 k24 0


(6)

4.1 Finding the parameters k
In this subsection we look to try and fit the parameters ki in the model. The experiments for single-cell
analysis are set up so that a promoter is added for an hour then a transcription inhibitor is added. Then we
get a reading of absolute counts for single cells 1,2 and 4 hours after the promoter is added (which we will
call “one hour”, “two hour” and “four hour” data respectively). After the inhibitor is added we can assume
there is no production (p(t) ≡ 0). So our problem becomes:

ȧ = Ka− ca = (K − cI)a (7)

where I is the identity matrix. This has solution a(t) = e(K−cI)ta(0) = e−cteKta(0) where a(0) is the initial
condition for the ODE. As shown from equation (8) and (9), the 1-norm of the solution (total number of
RNA molecules for that gene) is independent of K:

‖a‖1 = ‖e−cteKta(0)‖1 = e−ct‖eKta(0)‖1 = e−ct‖a(0)‖1 (8)

This is a result of editing counts being conserved (we didn’t have a −k25 term in the matrix K). While
this assumption might seem slightly naive as for a large production amplitude and a long timescale we will
have counts accumulating in the 25th state, on the shorter timescale we are looking at this should not cause
an issue.

If a vector v has only positive entries then ‖v‖1 = 1>v, where 1 is the vector of all ones. Assuming
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eKta(0) and a(0) have only positive entries (which can be argued separately), then

‖eKta(0)‖1 = 1>eKta(0) = 1>a(0) = ‖a(0)‖1 (9)

As 1>K = 0 (as the columns of K sum to zero), then 1>eKt = 1>.
Now consider a normalized version b = a/‖a‖1. Then

b(t) =
e−cteKta(0)

e−ct‖a(0)‖1
= eKt

a0
‖a(0)‖1

solves ḃ = Kb

We will use this fact to find the parameters k that best fit our data. As the ODE above requires no
production of RNA, we will treat the normalised one hour data as our initial condition for the ODE b(0).
Using the same optimisation process as we did for the simple model, we compare the normalised two hour
data to b(1) and four hour data to b(3). We now have an estimate for our parameters ki. Ideally we would
have more experimental data for the single cell parameters so that we could more accurately determine the
parameters ki.

4.2 Estimating the number of 0 edits
As in the bulk sequencing data, we do not have data for the number of RNA with 0 edits for any of our
observations. As we needed to know this to carry out the optimisation in the previous section, we introduced
the relative number of 0 edits as a parameter in the optimisation problem. We then had a normalised
distribution including the 0 edits column. By finding the scale factor between this normalised distribution
and the mean absolute counts (observed data) we can calculate the expected absolute RNA with no edits
at each time point. This gives us the absolute distribution at time 0 as shown in Figure 5 (one hour after
promoter was added).

Figure 5: We have added our prediction of 0 edits to the observed data

4.3 Finding the degradation rate
In this subsection we look at how we can make an estimate for degradation rate. Initially I took a fairly naive
approach in assuming that the absolute RNA counts could be used accurately to determine degradation rate
c. We could then seek c to minimise the loss function in equation (10) where χ is the set of timepoints at
which we make observations. So in this case χ = {1, 3}

Loss(c) =
∑
t∈χ
‖a(t)− e−cteKta(0)‖22 (10)
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However, due to the inaccuracies of the experiment and the variability of cell size the absolute RNA
count can not be used to measure the degradation rate. This can be seen in the experiment carried out.
The mean number of RNA after one hour, two hours and four hours is 813.4, 888.5 and 1386.1 respectively.
There is a clear increase in observed RNA count over time which is unexpected due to the degradation of
RNA and the lack of production (due to the introduction of the transcription inhibitor).

I simulated a new experiment (using the simulator explained in the next section) to try and estimate c
using the steady states of the ODEs. If we assume constant RNA production at rate P then we expect the
steady state â = (â0, â1, · · · â25) to be given by:

â0 =
P

k0 + c
(11)

â1 =
k0â0
k1 + c

(12)

So our estimate of c can be given by c = k0â0
â1
−k1. As this relies on the ratio of the two steady states this

method does not run into the same issues that occurred using the method above (we are relying on relative
counts rather than absolute counts). We expect to reach the steady state on the timescale of hours as shown
by the simulations in the next section. By carrying out reads after a long period of time, we can plot many
observations on a0 − a1 axis. Then using the gradient of the straight line of best fit through the origin we
can get a good estimate of â0â1 .

4.4 Running simulations
Simulations are carried out in a similar way to the simplified model with a few key differences. Firstly the
input distribution is absolute number of RNA (so must be integers). Secondly, the simulator now accepts a
production array. So if RNA is made at a constant rate λ for the 3rd hour, the number of RNA produced
in the 3rd hour has a Poisson distribution with parameter λ and each RNA is produced at a random time
uniformly distributed throughout the third hour.

To introduce degradation in our simulations we used the Gillespie Algorithm. Suppose there is an RNA
with i edits. Define µ = ki + c. The time until the RNA is given another edit or degrades is:

T =
1

µ
log(1/r1)

where r1 ∼ U [0, 1]. At this time the RNA accumulates another edit if r2 < ki/µ, otherwise the RNA
degrades, where again r2 ∼ U [0, 1] independently of r1.

I simulated the experiment that can be used to find the degradation rate. This involved starting with no
initial RNA molecules, producing RNA at rate 4 for the first 4 hours before turning off the production. We
can see from Figure 6 that the experiment approaches the steady state in the phase plane (red dot) before
moving back to the origin after production is over. This suggests that if we sequenced the single cells after
4 hours we could accurately find the degradation rate using the method in the previous section.

4.5 Model analysis
This model is much more useful than the simplified model as it allows us to make predictions on single cell
behaviour. This is useful as we can make simulations for each individual cell (see section 5.2). As we use use
a different set of bases to the data from the first experiment of the Timestamping paper [3] we had to retrain
to find ki in Section 4.1. As suggested in the paper, the editing rates should be the same as we calculated for
the bulk sequencing data (Section 3.1) meaning that we would only have had to calculate the degradation
rate as we move to the more developed model (provided we are using the same bases).

5 RNA velocity
In the RNA velocity paper [1], they defined the RNA velocity of the gene as the rate of change of spliced
RNA (as spliced RNA are used to make protein). So an analogous definition would be to define RNA velocity
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Figure 6: Simulated experiment

as the rate of change of all RNA:

v1 =

25∑
i=0

ȧi = P − c
25∑
i=0

ai (13)

Here we assume the degradation rate c is always the same for a particular gene so that we can use the
result of the previous experiment. We now carry out the same experiment (same production and initial
condition) as in Figure 6 but plot the RNA velocity v1. Initially the RNA velocity is large as RNA is being
produced at a fast rate. As the system approaches a steady state, the velocity tends to 0 as expected. After
the sudden drop in production, we see a sudden drop in the velocity as RNA is only being removed and not
created.

(a) Single simulation (b) Average of many simulations

Figure 7: Test observation

It seems as if v1 gives an accurate definition of RNA velocity. However, there are numerous issues with
our definition. The first being that we do not know the production rate p at this point.
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5.1 Alternative definition without production
To get around the fact that we do not know p, we can instead consider the rate of change of RNA with edits
greater or equal to 1:

v2 =

25∑
i=1

ȧi = k0a0 − c
25∑
i=1

ai (14)

This should gives us a “delayed” velocity as it does not account for the rate of change of the 0 edit RNA
molecules. We say it is “delayed” as the rate of change of a0 will affect the rate of change of the rest of
the RNA molecules after some time as the RNA molecules get edited. v1 is also highly sensitive on the a0
reading meaning that it is more stochastic than v0 . We repeated the simulation in Figure 7b and got the
following result:

Figure 8: Comparing average of v1 and v2 in simple experiment

Note that the “RNA velocity2” and total count of RNA with 1 or more edits have been multiplied by 3
so that we can more easily compare them to the data in Figure 7b. v2 seems to give a good estimation of
RNA velocity in this experiment. There is the most error in the first hour as originally there is no RNA in
the cell so it takes some time for our definition of velocity to calibrate.

As this new definition does not require us making an estimate of p it has an advantage over the original
definition v1. Additionally, v1 relies us on us having an accurate reading for absolute RNA counts which can
be highly variable. We can replace our observations of ai in v2 with normalised relative counts which will
be much more reliable.

An issue with both these definitions is that currently they both require readings of a0, an observation
which is not made in current experiments. Additionally, v0 and v1 can not be used to compare velocities
between cells. For example, a larger cell produces more RNA than a smaller cell so its velocities will have
larger magnitude than the smaller cell (when RNA velocity should be independent of cell size). We attempt
to combat this issue by normalising between genes in the next section.

5.2 Normalising between genes
In the RNA velocity paper they normalise their counts of spliced and unspliced RNA counts by dividing each
reading by the sum of spliced or unspliced RNA across all genes.This allows us to compare RNA velocities
between cells. If we suppose that aij is the number of RNA molecules with i edits relating to the jth gene,
then we can redefine a relative velocity for a gene j as:

v3 =
k0a0j∑N
k=1 a0k

− c
25∑
i=1

aij∑N
k=1 aik

(15)
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where N is the number of timestamped genes. It would require timestamping multiple genes experimentally
to see how useful this definition of RNA velocity could be.

We simulate an experiment to see how our new definition v3 compares to v1 and v2. I simulate a single
cell with 50 different genes which are timestamped. The degradation rates are randomly chosen uniformly
on [0, 2]. The production rates are of the form [p1j , p2j , p3j , p4j , p5j , p6j , p7j , p8j ] for the jth gene where RNA
is produced at rate pij for the ith hour. pij are i.i.d from the U[0,40] distribution. Initially we assume there
is no RNA in the cell. We then chose 4 random genes and compared our different definitions of velocity. In
Figure 9 we normalised each velocity by dividing by the maximum of each one so they could all be compared
on the same scale.

Figure 9: Comparing definitions in randomised experiment

From these four randomly chosen cells, v3 seems to give an informative definition of RNA velocity after
the first hour. A lot of the error (difference with v1) in the first hour comes from the fact that v2 and v3
take a while to calibrate so we ignored the first hour in our plots. Across all genes v1 and v2 agree on their
sign (both positive or both negative) 64% of the time while v1 and v3 agree on their sign 61% of the time.
Finally, v2 and v3 agree on their sign 84% of the time.

5.3 Summary of definitions
v1 provides the most accurate definition of RNA velocity but it relies on us knowing the production rate p.
We introduced v2 as an improvement on v1 as it does not require us knowing p to calculate the velocity even
if it is less accurate and “delayed”. The normalisation in v3 allows us to compare RNA velocities between
cells as variability in cell size means that it is difficult to compare magnitude of velocity between cells using
v1 or v2. It is worth noting also the key assumption we have made in our simulations that all the genes have
the same set of parameters ki (which might not be true in practice).

6 Conclusion
Our simplified model gave a useful way to model the behaviour of a tissue of cells without being able to
model each cell seperately. The more developed model allows us to make predictions on single cells using
the simulator. We have provided a new way to define RNA velocity using the timestamps. Even though
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this definition uses the reading of a0, a measurement not currently included in experimental data, I would
be keen to see if there is a way to measure this experimentally or make predictions on what it might be.

Moving forward it would be interesting to see how accurately the simulator we created matches the
results of real life experiments in more unusual experiments (for example having unusual production shapes).
Additionally, it would be useful to have more data using on the “good” bases described in Section 3.6 which
I would expect to better match the model.

Adding timestamps to multiple genes (as simulated in Section 5.2) would make our definitions of RNA
velocity multidimensional and I am keen to see how our definitions of RNA velocity would compare between
cells experimentally. The model would have to be adjusted greatly if there is a large difference in editing
rates between different genes.
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