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Abstract—Spent 3 months setting up experimental apparatus,
improving, modelling and understanding how to reduce noise
emitted from quadcopter propellers. Research culminated in
identifying design selection criteria and an experimental propeller
design that showed a noise reduction of 6 dB SPL lower
than the best in class low noise propeller geometry. Spent
an additional 3 weeks predicting financial markets using deep
recurrent neural networks, specifically predicting Forex currency
pairs. Experiments showed deep neural networks show potential
for prediction, however are outperformed by more conventional
methods such as a modified hidden Markov model with an
accuracy of prediction of 74% within the next 30 minutes, to the
price direction up, down or staying constant. Learning a variety of
machine learning methods, through on line courses and working
with fellow academics in Oxford’s Machine Learning Research
Group. Additionally over the summer gave me time to undertake
and complete a long distance on line course in Machine Learning,
by Andrew Ng at Stanford University, which I have completed
with an score of 98.8%.

I. QUIET QUADCOPTER PROPELLERS

Quadcopters are experiencing significant growth in adop-
tion and use in ever increasing applications, however the tech-
nology that they rely on has not been optimized or researched
to reduce their largest inconvenience factor, that of the loud
noise (100 dB sound pressure level (SPL)) that they emit,
which significantly hinders their close interaction with people.
Aim of the project was to use all prior research and apply this
to 12” quadcopter propellers to attempt to reduce the noise
as much as possible. The problem was formulated to research
a propeller that can provide a nominally constant thrust to
counteract the weight of an average commercial quadcopter,
approximately 400 grams of thrust for a 12” propeller.

Research last examined small propeller noise directly in
the 1970’s, amid oil crises when propeller planes were set to
overtake jet engine planes if the oil crises continued. Work
by David Brown et al. (1971) formulated empirical formulae
to predict the noise generated by the propeller. Applying his
equations to this specific problem, it is possible to reduce
the noise in theory by decreasing the tip speed velocity (by
reducing RPM), increasing the blade diameter, increasing the
blade solidity (blade number), and area of the blade, in effect
to reduce the blade loading density for a fixed thrust.

However realistically quadcopter propellers are designed
in standard sizes, often 12”, and increasing the number of
blades leads to significantly less aerodynamic efficient thrust
during hover, verified by my experiments. Applying this under-
standing to well understood propeller theory, non-dimensional

analysis, specifically the Thrust coefficient for a propeller,
which indicates that for a given propeller to reduce the noise
we want to maximise its thrust coefficient (thrust per fixed size
of the propeller).

Noise reduction of aerofoils has seen a recent research
interest, and has proven reliable noise reductions at large scales
of fixed wing aerofoils for planes. This is achieved through the
use of trailing edge serrations, which reduce the noise emitted
without a too significant reduction in lift, approximately 7dB
as measured by Alexandros Vathylakis et al. (2015).

Trailing edge serrations are believed to be one of the
dominant noise reduction technologies found in an owl in
nature, as they are believed to work by reducing vortex
shedding trailing edge noise, by redistributing fluid momentum
and turbulent energy towards the saw tooth tip.

Fig. 1. Experimental Apparatus

A. Methodologies and Experiments

I designed and built a large anechoic chamber (1.5m3),
constructed from 8mm thick MDF sheets, lined with sound
absorbing foam tiles, and designed a steel platform holder
pole, which was outsourced to internal Engineering Science
Metal workshop to weld together. I designed and put together
a high speed (8,000 RPM) brush less quadcopter motor setup,
with robust magnetic tachometer, robust load cell and static
synchronized calibrated SPL Cirrus noise meter, 2 SPL level
meters, and an internal synchronized microphone. I designed



automated testing, and synchronization of data from multiple
sensors, using various Labview Data Acquisition Devices,
which fed their data into a computer for logging, control and
analysis in real time. All propellers used in experiments bought
propellers and the 3D printed propellers were all balanced on
a mechanical propeller balancer, by sanding excess material
from the underside of the aerofoil to remove excess material.

To design custom propellers, I created code that took
propeller measurement data (beta angles along the chord of the
propeller, and chord to length ratios, pictures of the top down
outline and side pictures) from a the large online Illinois model
propeller database, to construct 3D CAD models of selected
propellers. Once I have the 3D model in point cloud format, I
created various algorithms that can adapt that 3D propeller to
add trailing edge serrations, warp the geometry and change the
dimensions and or the aerofoil NACA shape. Once the desired
propeller was created, I can then use the labs high resolution
(Formlabs 2) resin 3D printer to print the propeller. Once the
3D models had cured, I was able to test them in the designed
and built experimental apparatus, collect data, and analyse any
noise reductions for the same amount of lift. This process was
repeated iteratively testing various designs, theories and ideas,
to investigate what would reduce propeller noise.

Fig. 2. Thrust stand, and a 3D printed propeller

Evident from theory that the lowest noise propellers were
those with the largest thrust coefficient, this was experimentally
verified by testing 11 different off the shelf propellers. The
propeller geometry which showed the lowest noise for the
same amount of lift was the ”Slow Fly” geometry. Therefore
I searched and used the propeller geometry with the highest
thrust coefficient from the online propeller database (270
propellers), which had a higher predicted thrust coefficient
1.4 compared to the slow fly model 1.1. However when
I 3D printed this model, and tested it, it underperformed
against the off the shelf ”Slow Fly” geometry, however this
could be due to the 3D printed material is different from
common propeller injection moulded plastic, and additionally
the surface roughness of the 3D printed propeller would have
been different compared to the injection moulded plastic.

The technical problem of how to further reduce the noise
for a fixed amount of thrust, incorporating trailing edge

serrations on the propellers was then worked on. Initially
experimenting with trailing edge serrations along the entire
edge of the propeller, showed reduction in noise of 6dB for
the same geometry, however a significant loss in thrust, due
to decreased blade lift area. Also experimented with q-tip,
warping the propeller around on itself, however the results
showed this reduced lift more than noise reductions.

Through many iterations (approx 40) a optimized propeller
was empirically researched and designed that shows lowest
noise for its geometry, and trailing edge adaptions, whilst
maintaining the same thrust of 400 grams. This lead to a
reduction comparative noise of 6 dB SPL. This design was
verified in various materials, and appears on small tests to be
more efficient than conventional comparative blade geometries.
The design will not be published in this paper, as I am still
under discussion about the possibility securing Intellectual
Property on the design, with a patent from the University.

Fig. 3. Propellers being tested

Working on this project, with supervision from Post Doc
James Turner, gave me great insight into all phases of an
experimental research project. I learnt many lessons, among
one of which is best to always plan out exactly what you
plan to achieve, and there are often many ways to design
experimental apparatus, as I discovered when testing propellers
originally I designed an optical tachometer, to measure the
propeller speed, however was larger than expected and col-
lided with a propeller, upon the propeller undergoing larger
deflections than anticipated when operating. This was replaced
with a much smaller, more accurate magnetic tachometer.
Likewise the same was for the 3D propeller manipulation,
I coded all my algorithms in Matlab, however I needed to
blend two CAD components a blade holder and the custom
blade itself, originally I wrote code to write out Solidworks
macro commands to create the blade, however soon ran into
Solidworks macro size constraints, with high resolution point
cloud models, (2.5 million points), therefore I switched to
using CAD package called MeshLabs to blend the two CAD
models together, which I could then create the final 3D model,
which was sent to the 3D printer for printing. Also in some
blade geometries, I drafted sharp angles, which lead to sever
stress concentrations, which would often break the propeller



under load at those areas. This project helped me gain real
insight following a project from conception, design and build,
testing, experiments to write up. I think these skills will be
invaluable in my future research when carrying out my dPhil
(PhD).

II. FINANCIAL MARKET PREDICTION USING DEEP
RECURRENT NEURAL NETWORKS

Forecasting financial markets is of great interest to hedge
funds, and financial organisations, for opportunities and risk
mitigation. Adapting the work on time series forecasting by a
dPhil candidate, and working with Stephen Roberts, to predict
the price trend of financial prices, specifically tested on easily
obtainable high resolution Forex currency pair GBP/USD
minute data. Previous work forecasting stationary time series
signals showed that deep recurrent neural network (RNN),
Long Short Term Memory (LSTM) architectures were always
outperformed by conventional proven forecasting methods,
such as Attractor based Gaussian Processes.

However LSTM architectures showed best in class for
predicting repetitive patterns, such as seasonal variations, over
conventional methods. My small internship in the Machine
Learning Research Group in the University of Oxford, was
to apply this work to predict non-stationary financial data, to
improve the results of the deep RNN LSTM, it was suggested
that I transform the continuous minute data into symbols,
where each symbol corresponds to a price movement direction
up, down or flat. Coding up a symbol extractor that sorted all
price points into hourly blocks, and used 50% of the data points
randomly permuted to perform linear regression, and then used
the remaining 50% data points to act as a cross validation cost,
using the mean squared error cost criterion. This was done
to attempt to avoid over fitting. Created a Markov like model
adaption to act as my benchmark, to compare against the RNN
LSTM.

Initially I tried a symbol character set of 5, which were
up, down, flat, quadratic up and quadratic down. I extracted
symbols for 4 weeks of data (This was as much as I reasonably
could extract using my limited computer processing power,
within the given time frame), 95% of this data was training
data, and the last 5% was testing data. Running the RNN
LSTM output a best accuracy of 27.27%, however this was
outperformed by the benchmark of an accuracy of 30.57%.
Interestingly both of these methods outperform random, which
has a default accuracy of approximately 20% with 5 characters
to choose from.

Analysing the data, it was clear I could increase the
accuracy by reducing the symbol character set. I reduced the
symbol character set to 3 (Up, Down, Flat), and overlapped
the symbols by 50% (i.e. the symbols are one hour wide,
however increment 30 minutes in time). I ran the same RNN
LSTM which output a best accuracy of 45.45%. However
this underperformed compared to the benchmark model with
an accuracy of 74.14%. Both of these methods outperform
random, which has a default accuracy of approximately 33%
with 3 characters to choose from.

Working in Stephen Roberts lab gave me great insight to
how world class machine learning and quantitative financial
research is performed. This has improved my machine learning

skills, research skills, report writing, team work and data
science skills. I am currently in talks with an application for
a dPhil within the machine learning research labs here in the
University of Oxford.


